Gaussian Variational Approximation With a Factor Covariance Structure

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian variational approximation with a factor covariance structure

Variational approximation methods have proven to be useful for scaling Bayesian computations to large data sets and highly parametrized models. Applying variational methods involves solving an optimization problem, and recent research in this area has focused on stochastic gradient ascent methods as a general approach to implementation. Here variational approximation is considered for a posteri...

متن کامل

Gaussian Covariance and Scalable Variational Inference

We analyze computational aspects of variational approximate inference techniques for sparse linear models, which have to be understood to allow for large scale applications. Gaussian covariances play a key role, whose approximation is computationally hard. While most previous methods gain scalability by not even representing most posterior dependencies, harmful factorization assumptions can be ...

متن کامل

The Variational Gaussian Approximation Revisited

The variational approximation of posterior distributions by multivariate gaussians has been much less popular in the machine learning community compared to the corresponding approximation by factorizing distributions. This is for a good reason: the gaussian approximation is in general plagued by an Omicron(N)(2) number of variational parameters to be optimized, N being the number of random vari...

متن کامل

Gaussian Fields and Gaussian Sheets with Generalized Cauchy Covariance Structure

Abstract. Two types of Gaussian processes, namely the Gaussian field with generalized Cauchy covariance (GFGCC) and the Gaussian sheet with generalized Cauchy covariance (GSGCC) are considered. Some of the basic properties and the asymptotic properties of the spectral densities of these random fields are studied. The associated self-similar random fields obtained by applying the Lamperti transf...

متن کامل

Variational Gaussian approximation for Poisson data

The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Graphical Statistics

سال: 2018

ISSN: 1061-8600,1537-2715

DOI: 10.1080/10618600.2017.1390472